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Abstract
We survey universal concepts that influence dichroism and resonant Bragg
diffraction, aiming to reach across the range of scientific disciplines that
benefit from x-ray techniques, namely, chemistry, physics, life-sciences, and
the science of materials. To this end, we adopt a top down discussion of the
aspects of symmetry and concomitant selection rules. Starting from selection
rules that can be deduced from the global condition that an observable quantity
is unchanged on reversing the directions of both space and time separately, to
selection rules that flow from bulk symmetry properties of electrons imposed
by elements of a point group or crystal class to, finally, atomic selection rules
that emerge from the details of the electronic structure. As a motivation for the
latter we discuss, with a new calculation of the x-ray scattering length, E1–M1
absorption and scattering events that particularly interest scientists studying the
chirality of life. In the main text there is modest use of mathematics, with
appropriate details relegated to a few appendices.
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1. Introduction

Techniques based on x-ray dichroism are well established, span the physical sciences and
life-sciences, and routinely provide a wealth of scientific knowledge ranging from protein
folding to nanomagnetism [1–7]. More recently, resonant x-ray Bragg diffraction has proved
its worth [8, 9]. In particular, the two techniques, dichroism and resonant diffraction, have
played a significant part in elucidating radical new properties of materials, including, high-Tc

superconductivity, colossal magnetoresistance, and multiferroic modifications. The discovery
of new electronic properties of materials has fuelled a resurgence of interest in atomic charge,
spin and orbital degrees of freedom in systems of highly correlated electrons [6, 9, 10]. X-ray
techniques offer a full view of these electron degrees of freedom and no other technique in the
science of materials offers quite the same scope and accuracy.

Nature is daunting in the scale of complexity possessed by materials that surround us.
Yet it is economical with general criteria of universal applicability, and we shall examine
those that bear on dichroism and resonant diffraction in x-ray scattering. By and large,
these general conditions stem from symmetry transformations and they create selection rules,
which proscribe observations, e.g., the translation symmetry of a perfect crystal is the cause
for Bragg’s Law for diffraction intensities. Although outside of our main focus of interest
here, it seems worth noting that, these same selection rules apply to and proscribe meaningful
numerical simulations of an observable quantity, including a dichroic signal and a diffraction
intensity.

Starting with Neumann’s principle and global selection rules [5, 6, 11–13], we proceed
to those derived from the macroscopic symmetry of a sample, and finally, we step down to
examine the fine details and selection rules embedded in atomic calculations of observable
quantities.

Absorption and diffraction are two sides of one coin, of course, since they have in common
the x-ray scattering length, f [2, 14]. Absorption and its dependence on photon polarization
and sample properties (dichroism), are related to the value of f in the forward direction, i.e.,
no deflection of the x-ray beam, and the intensity of a Bragg reflection is proportional to | f |2.

To the casual interested reader, however, universal rules in studies of dichroism and
diffraction are often obscured, partly by differences in the nature and size of the electronic
systems under investigation, and by the relative importance of various resonance events,
including electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) [9, 15–17].
Perhaps even more confusing is the inconsistent language adopted to describe dichroic effects
in different scientific disciplines.

The order of magnitude of the strength of an E1 resonance event is given by an atomic
electric dipole ea0, where a0 is the Bohr radius, and the strength of an M1 event is given by a
Bohr magneton μB = α2a0, where α is the fine-structure constant ≈1/137. Thus, the relative
strengths of E1 and M1 are expressed by ratio M1/E1 ≈ α/2. The strength of an E2 event
depends on the magnitude of the x-ray wavevector q ≈ 0.51E (keV) Å

−1
, where E is the

x-ray energy, and we achieve an estimate E2/M1 ≈ E/(27 eV). These order of magnitude
estimations take no account of radial integrals. In the case of an M1-event most integrals
vanish. Our estimates are actually upper bounds that might be realized when electric events are
more or less forbidden in the observed process [17].

Magnetic degrees of freedom possessed by electrons in a material can be polarized, by
application of a magnetic field or through a spontaneous ordering of magnetic moments that is
heralded by a phase transition. The fundamental signature of the magnetically polarized state
is that the symmetry of time-reversal is broken, and this symmetry breaking manifests itself in
a raft of observable effects, including the Faraday effect [18].
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Some materials exist in structural units called enantiomers which are non-superimposable
mirror images of each other, i.e., they are related like our left and right hands [13, 19–21]. The
two units cannot be brought to coincide using ordinary rotation operations, of course, for they
are interconverted by a change, or reversal, of parity. One enantiomer is called left and the other
right and each enantiomer is said to possess a definite chirality (χειρ = hand). An operational
definition of a chiral unit is a unit whose image in a plane mirror cannot be made to coincide
with itself [22]. The fundamental signature of such a modification is the lack of any mirror
symmetry and the concomitant breaking of inversion symmetry. So-called chiral symmetry
is seen to be the actual absence of a symmetry, namely, a lack of symmetry under improper
rotations (rotation–inversions) [13], and a chiral material does indeed have lower symmetry
than an achiral material. A chiral unit, or molecule, is said to be dissymmetric because of the
absence of an axis of improper rotation, or all its symmetry properties are proper rotations.
Such a unit is not necessarily asymmetric and devoid of symmetry, of course.

Left-handed and right-handed materials have identical properties, except when interacting
with other chiral materials or chiral probes. Enantiomers of quartz (P312 (structurally right-
handed) and P322 (structurally left-handed)) have opposite chirality (or handedness) and they
rotate the polarization plane of light passing along the optical axis in opposite directions [12].
Sodium ammonium tartrate, famously studied by Pasteur [23], is one of few materials to self-
resolve in a crystalline modification and it forms homochiral units when taken below 296 K.
Natural circular dichroism arises from a partnership of specific signatures of the parity-odd
properties of electrons and circular polarization (helicity) in the illuminating x-rays. Let us
note that, a magnetic field has no chirality, and a magnetic field alone cannot resolve a racemic
mixture into its enantiomers.

Analyses of observations from optical activity and natural circular dichroism have features
in common, and a brief outline of optical activity merits its place in this article [5, 12, 19].
Optical activity and natural circular dichroism both arise from parity-odd processes in
absorption, e.g., E1–E2 and E1–M1 processes. In a circularly polarized beam of light used for
the observation of natural circular dichroism, the electric field direction rotates along the beam
and it is a chiral phenomenon quantified by the helicity carried with the beam. Like helicity
rotatory power is a pseudoscalar (a parity-odd scalar), which is derived from the observation
of optical activity. However, this bulk observable is not an unambiguous signature of chirality
since four crystal classes (m, mm2, 4̄, and 4̄2m) of the 15 crystal classes that allow optical
activity are not enantiomorphous [12]. A signature of chirality of a molecule or a crystal that is
unambiguous embraces additional information found in the space group.

A chiral unit possesses the symmetry of a self-enantiomeric space group, or a partner in
one of the 11 enantiomorphic space group pairs, and all such space groups belong to one of
the 11 enantiomorphous crystal classes. Many organic molecules are chiral, with the simplest
amino acid in our body, glycine, a notable exception. Chiral molecules form enantiomorphous
crystals of the corresponding handedness. Enantiomorphous crystals can also be built from
achiral ion groups or molecules, e.g., quartz, NaClO3 [24], NaBrO3 [24], and tellurium [25].
The chlorate and bromate crystals possess the symmetry of the self-enantiomeric space group
P213 and the two compounds, with identical chirality, rotate plane polarized light in opposite
senses [24, 26].

The absolute structural configuration corresponding to a particular sense of optical rotation
in enantiomorphic crystals can be determined by x-ray diffraction, if the crystal contains an
ion which absorbs x-rays to an appreciable extent and anomalous scattering is observed [8].
Alternatively, neutron diffraction can be used to determine the absolute configuration [25]. The
amplitude for scattering neutrons by the electrostatic field in a crystal includes a term that
depends on the polarization of the beam, which arises from the spin–orbit interaction [27, 28].
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Figure 1. A conceptual circular dichroism experiment. The dichroic signal is the difference in
absorption for the two opposite states of helicity.

In the cross-section, asphericity in the charge distribution in the spin–orbit term can cause
interference with the amplitude for ordinary nuclear scattering to create a polarization
dependence of the diffracted intensity. The polarization effect can be easier to measure than
is the intensity difference between Bijvoet pairs [8], and it has been used to determine the
absolute structural configuration that corresponds to a particular sense of optical rotation in a
single crystal of tellurium [25] (enantiomorphic forms P3121 and P3221 which have opposite
rotatory powers).

As a rule, living systems are constructed of only one of the two enantiomorhisms of
biological molecules [1, 20, 21]. The exclusive use in terrestrial life of left-handed amino
acids by proteins and right-handed sugars in DNA and RNA, and in metabolic pathways, is a
pattern which is often called the homochirality of life [29, 30].

The origin of homochirality is one facet to the debate about the origin of living from
nonliving matter, as by biopoiesis. An attempt to solve the issue of homochirality appeals
to magnetochiral dichroism [5, 31] that arises in absorption by a material in which there
is combined breaking of time-reversal and inversion. A notable feature of magnetochiral
dichroism is its independence of the state of polarization of the x-rays.

In this paper we strive to find common ground between disparate features of the x-ray
techniques. We first consider aspects of global symmetry, and draw what conclusions we
can without making additional assumptions. Our next step is to consider the character of
atomic spherical tensors that describe the various interaction processes, again underpinned by
arguments of symmetry, and draw further conclusions regarding the general nature of these
phenomena. For the most part, we can draw on established results and the main exception is
our new and novel treatment of the scattering length for the E1–M1 process.

2. An orientation to dichroic signals

In the first few sections we discuss various global selection rules that affect the absorption
coefficient and dichroic signals. Conceptually, an absorption experiment to observe circular
dichroism is that illustrated in figure 1, where the dichroic signal is the difference in the
absorption of two beams with opposite helicities.
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Table 1. Transformations that preserve the line of propagation of the photon.

Transformation Description Picture (q′/q, P ′
2/P2)

1 None (+,+)

M‖ Mirror plane ‖ to beam (+,−)

M⊥ Mirror plane ⊥ to beam (−,−)

2‖ Twofold rotation about beam (+,+)

2⊥ Twofold rotation ⊥ to beam (−,+)

1 Inversion (−,−)

1 (t → −t) Time-reversal (−,+)

One class of global rules is derived from a fundamental postulate that is often referred to
as Neumann’s principle [32]. It may be stated as follows: an observable signal is forbidden
if a symmetry operation applied to the physical system of interest modifies one aspect of the
system and leaves all other aspects unchanged. The physical system in question is the entire
system, made up of the sample plus the radiation used in the observation, whose coordinates are
those of both space and time. Observable properties of the entire system must be independent
of coordinates and any symmetry transformation. An alternative perspective is that, f is a
true scalar quantity and, as such, it must be invariant with respect to coordinate and symmetry
transformations applied simultaneously to the electrons and the photons.

For the present discussion of global properties, the relevant coordinate transformations
are the inversion of all spatial coordinates, an operation denoted by I , and the reversal of
the direction of time, an operation denoted by θ [6, 9, 33]. (Looking ahead, in tables 1–3,
inversion and time reversal are labelled according to the convention adopted in crystallography
where they are denoted by an overbar and an underbar, respectively.) An observable quantity,
e.g., a dichroic signal, cannot change when coordinates are merely renamed. Hence it follows
that an observable is invariant with respect to I and θ applied separately. This conclusion is
independent of the nature of forces that determine the properties of electrons, including parity-
violating forces from weak neutral currents, for example [5, 34, 35]. Observables of interest
here depend on both x-ray variables and electron variables and, obviously, we shall need to
know how these variables react to I and θ . Indeed, we will find that the symmetry of an
observable is a compound symmetry derived from the symmetry properties of all constituents.

States of polarization in a beam of photons are described by three, purely real Stokes
parameters, P1, P2 and P3 with P2

1 + P2
2 + P2

3 � 1 and the equality is achieved by a fully
polarized beam [2, 16]. P3 defines linear polarization along two orthogonal directions in the
plane normal to the beam, ξ (P3 = +1, σ polarization) and η (P3 = −1, π polarization). P1
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Table 2. The properties of four classes of electron variable under inversion or time-reversal.

Inversion
(r → −r),
denoted by I or 1

Time-
reversal
(t → −t),
denoted by
θ or 1 Tensor rank K

1 (or M2 etc) + + even K
U − + all K
M + − odd K
G − − all K

Table 3. Symmetry transformations applied to dichroic signals with time-even electron variables.
Plus (minus) signs indicate that the relevant electron or x-ray variable is unchanged (changed) by
the symmetry transformation listed in the left-hand column, with no entry for the electron variable
indicating no symmetry. Ticks and crosses indicate whether or not the signal is allowed for the
given symmetry. The only symmetry signatures of the electron variables (1, U, etc) listed are those
that are completely general and found in table 2. Signatures of the x-ray variable are not listed.

Symmetry, Ŝ
(in addition to
time-reversal) P2 U 1

Isotropic
absorption

P2U (natural
circular
dichroism)

1 (none) + + +
M‖ − +
M⊥ − +
2‖ + +
2⊥ + +
1 − − +

describes the linear polarization along directions at angles ±π/4 to the ξ -axis. Finally, P2 is
the mean helicity in the photon beam. All Stokes parameters have the property that they do
not change under the action of θ , i.e., P1, P2 and P3 are time-even variables. With regard to
inversion, or parity, P1 and P3 are true scalars and do not change under the action of I (parity-
even) while P2 is a pseudoscalar that changes sign under the action of I (parity-odd). The
photon wavevector, q, is a polar vector (parity-odd) and time-odd. Additional properties of θ

and a definition of the helicity operator, �, can be found in appendix A.
Properties of electrons in the sample can be usefully divided into those which are parity-

even and those that are parity-odd, which may only occur in materials that possess a non-
centrosymmetric structure. Bulk properties related to parity-odd processes, like optical activity,
are forbidden in materials belonging to a centrosymmetric crystal class but this rule does not
apply to the crystal structure factor for diffraction, except its value for forward scattering which
is proportional to an absorption signal. Parity-even properties are observed in x-ray processes
diagonal with respect to the resonance event determined by products of matrix elements of
definite parity, such as E1–E1 and E2–E2. The magnetization, M, is parity-even (an axial
vector) and it is time-odd. A time-even and parity-even property of the electrons is equivalent
to an even power of M, while a time-odd and parity-even property is equivalent to an odd power
of M and such a property is often simply referred to as a magnetic property of the electrons.
We find that, for parity-even properties of the electrons there is a one-to-one correspondence
between the rank and the exponent of the equivalent variable and its behaviour with respect to
time-reversal; even rank is time-even and odd rank is time-odd (see, also, appendix A).

An interaction between x-rays and electrons which produces a dichroic signal can
be a function of q and a Stokes parameter. Products of x-ray variables and variables

6
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for electron properties that are invariant under the separate action of I and θ will lead
to an allowed observable. Products with this property to be used in the following are
the parity-even electron properties P3M2n , linear dichroism, qP2M2n+1, magnetic circular
dichroism (with n integer), and the parity-odd electron properties P2U, natural circular
dichroism [4, 9, 15, 36–40], qG, magnetochiral dichroism [9, 31, 39, 41, 42], and qP3G, non-
reciprocal dichroism [9, 39, 43, 44].

The distinction between reciprocal and non-reciprocal dichroism is behaviour with respect
to the direction of propagation of the illuminating beam of x-rays. A reciprocal, or natural,
dichroism is independent of the beam’s direction whereas non-reciprocal dichroism changes
sign when the beam’s direction is reversed.

In the case of parity-odd electron properties, observed in processes that engage E1–E2
or E1–M1 events (products of parity-odd and parity-even matrix elements), the parity-even
magnetization is no longer an appropriate equivalent variable. Instead, we use two parity-
odd variables denoted by U (‘ungerade’) and G (‘gerade’) that are time-even and time-odd,
respectively [9]. With respect to the combined action of I and θ , U and M behave alike,
namely, they both change sign, and U is often called a polar variable. The symmetry properties
of G match those of the magnetoelectric effect [9, 39, 41, 42]. Products of q, a Stokes parameter
and U or G that are invariant under the separate action of I and θ have been given above.

Note that circular dichroic signals, proportional to P2, observe either a magnetic property
(parity-even) or a polar property (parity-odd) of the electrons. A measure of the actual chirality
of the electrons is the scalar part of U and this variable is a pseudoscalar, of course. An applied
magnetic field couples to time-odd variables, which are the magnetic and magnetoelectric
variables. A field can be exploited to polarize a paramagnetic electron state, or reverse the
polarity of a net spontaneous long-range magnetic order.

In the following sections we focus on selection rules that govern electron properties in the
various forms of circular dichroism mentioned in the foregoing discussion. For example, we
will demonstrate that, with natural circular dichroism there is a component of U which can be
different from zero in a fluid sample. Later on, we recover the component of U in question
from the description of the E1–M1 process in section 5.

3. Circular dichroism

We define circular dichroism as being the dependence of some x-ray interaction on the
handedness of circular polarization, P2, of the photon beam. Dichroic effects in x-ray
attenuation by a material are illustrated in figure 1. While much of the underlying physics
can be extended to other processes—one can speak of circular dichroism in x-ray scattering,
photoemission etc—these phenomena involve additional vectors and are generally described
by different atomic tensors.

Looking at figure 1, a circularly polarized monochromatic photon beam enters a sample,
whose macroscopic shape is unimportant except for the thickness. The beam exits the sample
in the same direction and with the same polarization, and it is monitored by a photon detector.
In our idealized picture, where we neglect effects of linear dichroism, for example, the exit
beam is considered to be identical to the incident beam to within a scale factor (we do not need
to concern ourselves with the phase at this stage). The photon state is therefore in a pure state
of the x-ray system.

The ratio of transmitted to incident intensity, or transmittance, is then

I

I0
= e−μt

7
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where μ is the linear absorption coefficient and t is the sample thickness normal to the beam.
The total cross-section, σtot, and μ satisfy μ = Nσtot , where N is the number density. This
relation links a bulk property, μ, to a quantity that can be calculated for an atomic model of a
material. σtot may be derived from the scattering length for the elastic scattering of x-rays by
ions in the forward direction, with no change in polarization, which we denote by f0. The actual
relation, known as the optical theorem [14, 16], is an exact relation and it is σtot = 2λ Im( f0)

where λ is the x-ray wavelength. Approximations of one kind or another in the calculation of
f0 are inevitable, of course.

We write the absorption coefficient as the sum of a term that is invariant with respect to
helicity, P2, and a term that reverses:

μ = μ0 ± �μ.

The object of the experiment is then to establish μ and �μ, both of which generally depend on
the photon energy and sample orientation. The sample is said to exhibit circular dichroism if
the dichroic signal = �μ �= 0.

4. Selection rules for circular dichroism derived from sample symmetry

Let us consider under what circumstances knowledge of the symmetry of electrons in a sample
is sufficient to state, with absolute confidence, that circular dichroism is absent in absorption.
The only basic assumption to be made is that, all observable properties of electrons in the
sample are invariant with respect to I and θ (1 ⇔ I , and 1(t → −t) ⇔ θ), even when the
energy of the electrons includes a contribution from parity-violating forces that couple electrons
and nucleons.

In order to enumerate the signals that are allowed for specified sample symmetries we
appeal to Neumann’s principle, once more. An observed signal is unchanged by a symmetry
transformation, which we denote by Ŝ. Recall, from section 2, that a dichroic signal is actually
the product of x-ray variable(s) and an electron variable, e.g., magnetic circular dichroism is
represented by (qP2)(M). The action of Ŝ on a variable X is specified by a signature sx that
has values ±1, and X is said to be unchanged by Ŝ when sx = +1. Using X for the x-ray
variable(s) and E for the electron variable, with a signature se, the principle is equivalent to
the identity sxse = 1. The sample symmetry is specified by se = +1, i.e. the symmetry of
electrons in the sample is unchanged by Ŝ. With this premise, we simply enumerate signals
that satisfy sxse = 1. These signals, with sx = +1 and se = +1, are allowed with the symmetry
transformation Ŝ.

We start by constructing symmetry transformations for a circularly polarized beam of x-
rays, and any one of the transformations can be used for Ŝ. By restricting the discussion to
those transformations that preserve the line of propagation of a photon, one can define two
useful scalar variables characteristic of a transformation: the ratio of the helicity (P ′

2/P2) of
the transformed to original photon, and the corresponding ratio of wavevectors (q′/q). Each
ratio has values ±1, which we denote by + or −. Table 1 lists the results of applying various
transformations to a circularly polarized photon. The validity of the entries is possibly apparent
by inspection of the pictorial representations of a circularly polarized photon. Alternatively,
they may be derived from the symbolic relations, I� = −�, θ� = �, 2⊥� = �, 2‖� =
�, I q = −q, θq = −q, 2⊥q = −q and 2‖q = q, together with M‖ = I⊗2⊥ and M⊥ = I⊗2‖.
Note that time-reversal, θ , and a twofold rotation perpendicular to the propagation vector, 2⊥,
are equivalent symmetry transformations of a photon. Recall that, P2 is the value of the helicity
operator, �, averaged over states of polarization (see, also, appendix A).

Although table 1 shows some symmetry properties of just one specific photon polarization
state (right-handed circular), it provides the building blocks for describing the symmetry of any

8
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Table 4. Symmetry transformations applied to dichroic signals with time-odd electron variables.
The right-hand column lists the constraint placed on M by the specified sample (electron) symmetry.

Symmetry, Ŝ P2 q M G

qP2M (magnetic
circular
dichroism)

qG (magneto-
chiral dichroism)

Comment on
vanishing
magnetic circular
dichroism

1 + + + +
M‖ − + M ⊥ q
M‖ − −
M⊥ − −
M⊥ − + M ⊥ q
2‖ + +
2‖ + − M ⊥ q
2⊥ + − M ⊥ q
2⊥ + +
1 − − + −
1 − + − + M = 0

pure state of polarization, which can be written as a coherent sum of the right- and left-handed
amplitudes (helicity eigenstates). In this paper, we do not discuss, explicitly, dichroic effects
that couple to linear polarization. We will consider effects which couple to an unpolarized
beam (i.e. magnetochiral dichroism). Such a beam can be realized by taking an incoherent sum
of right- and left-handed states.

Symmetry properties of the electrons are contained in the relevant crystal class or point
group, and they are far more varied than those of an x-ray beam, discussed above. Electron
degrees of freedom in a sample are represented by equivalent variables that are usually
expectation values of spherical tensor operators. Our choice of variables is discussed in
section 2 and they are gathered in table 2. For the present development, all we need to note
are their signatures with respect to inversion and time-reversal. In table 2, parity-even (parity-
odd) is labelled +(−), and the same labelling scheme is used for time-even and time-odd. In
general, the sample will contain variables that have no definite symmetry with respect to these
operations and will then be described by a sum of these basic variables.

We can now enumerate signals that are allowed by specified sample symmetry. The basic
symmetry transformations are listed in table 1. Tables 3 and 4 list the symmetry of various
x-ray and electron variables, and whether or not the resulting signals are allowed, based on the
premise that the electron variable is unchanged.

The construction of entries in the tables merits comment. A − sign is used in the tables
to label an electron variable that is changed by specific sample symmetry, Ŝ. By definition, the
corresponding signal is forbidden and marked , e.g., in table 3, P2U is forbidden for sample
symmetry 1 because U is parity-odd with − in the column labelled U. An electron variable
unchanged by Ŝ is not observed should Ŝ change the corresponding x-ray variable(s), e.g.,
in table 4 magnetic circular dichroism (MCD) is a forbidden signal for sample symmetry M‖
because the product of the corresponding x-ray variables is changed by M‖.

While only four classes of signal are described, we should point out that these are
archetypal examples that represent all signals with the same x-ray and sample symmetries under
inversion and time-reversal. For example, signals that are independent of polarization share the
same symmetry properties as those which scale with P1 or P3; terms which are of even power
in M are even with respect to both I and θ and can be represented by the symbol, 1 (sometimes
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Table 5. Symmetry transformations for a fluid applied to time-even electron variables, and the
corresponding dichroic signals. Shown in brackets in the left-hand column are specific cases of a
more general transformation, which cause some signals to vanish.

Symmetry, Ŝ
(in addition to
time-reversal) 1 (isotropic)

P2U (natural
circular dichroism)

1
M(M‖, M⊥)

2

1

omitted). For example, the item 1 in table 2 can represent either isotropic absorption or linear
dichroism, P3M2, although the condition for the resulting signal to vanish may differ due to the
different transformation properties of the x-ray variable under reflection or rotation.

Next, let us consider dichroic signals for a spatially isotropic and homogeneous sample;
fluids of randomly oriented, identical molecules or fine grains constitute such a sample. We
remain focused on the symmetry properties of the constituent parts of the fluid. Specific
directions in the symmetry transformations of a fluid are meaningless, of course. If a constituent
possesses a mirror plane the fluid is totally symmetric with respect to any mirror plane, for
example. Should any mirror plane of symmetry cause a signal to vanish, the signal from the
fluid vanishes. It is therefore a relatively simple matter to extend the above tables to fluids.
Signals that are created by a fluid with time-even electron variables are given in table 5.

A fluid with time-odd electron variables is more interesting. Consider first a fluid not
perturbed by the coupling of time-odd electron variables to an external field. Such a sample is
unchanged by any spatial rotation, of course. But the relevant x-ray variables (q and qP2) are
changed by a rotation, namely, 2⊥. Thus, an unperturbed fluid with time-odd electron variables
does not create dichroic signals.

We next turn to a fluid, with time-odd electron variables, that is polarized by an external
magnetic field. Let the field be perpendicular to q, say. The spatial symmetry of the fluid
is reduced by the polarization induced in the electron variables. However, the fluid remains
unchanged by a rotation that causes the relevant x-ray variables to change, a rotation 2⊥ which
is a symmetry transformation of both the intrinsic fluid and the external field. So, a (magnetic)
fluid with time-odd electron variables that has field-induced polarization perpendicular to q
does not create dichroic signals.

The situation is quite different if the applied field is parallel to q. There is no obvious
argument in this case to suggest that dichroic signals vanish, and in general, they do not.
To enumerate the allowed signals, we consider a fluid whose randomly oriented constituent
parts possesses symmetry transformations that are consistent with the symmetry of the applied
field, i.e. invariance with respect to any rotation about q. The allowed signals are summarized
in table 6. In this table, we indicate the general symmetry of the electron variable and, in
brackets, the specific sample symmetry that is consistent with the external field. It is the latter
that determine whether or not the dichroic signals of interest are forbidden.

Tables 3–6 reveal a surprisingly large number of important results, considering that we
have yet to discuss specific underlying physical mechanisms. Some noteworthy conclusions
are summarized below.

Oriented samples and time-even electron variables:

• Natural circular dichroism (NCD) is ruled out by inversion symmetry.
• Although NCD is ruled out in the presence of mirror symmetry perpendicular or parallel
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Table 6. Symmetry transformations for a fluid applied to time-odd electron variables and
corresponding dichroic signals, with an external magnetic field parallel to q.

Symmetry Ŝ

qP2M (magnetic
circular
dichroism)

qG (magnetochiral
dichroism)

1
M(M⊥)

M(M‖)
2
2

1

to the beam, it is not ruled out for a general mirror plane. NCD in oriented samples cannot,
therefore, be identified as a uniquely chiral phenomenon of the sample.

• NCD is invariant with respect to twofold rotations about the beam, or perpendicular to it.

The latter point is not immediately apparent from table 3. However, we note that P2 is
invariant with respect to 2⊥. Moreover, the observable dichroic quantity, P2U, must be invariant
with respect to all symmetry operations. This requires that U in P2U must be invariant with
respect to 2⊥.

Oriented samples and time-odd electron variables (magnetic crystals):

• Magnetic circular dichroism (MCD) is forbidden when M (which we can identify with the
sample magnetic vector) vanishes, or lies perpendicular to the beam.

• MCD reverses under twofold rotation of the sample perpendicular to the beam (2⊥).
• Magnetochiral dichroism (MχD), which couples an unpolarized (or linearly polarized)

beam to the time- and parity-odd magnetoelectric variable, G, vanishes if the sample
possesses either parity or time-reversal as separate symmetries. However, MχD is allowed
if these two symmetry transformations appear in the combination Iθ .

• MχD is generally allowed with oriented samples that possess mirror symmetry. In
consequence, MχD is not identified as a true chiral signal in this instance.

Fluid samples:

• NCD for fluids vanishes for all non-chiral sample symmetries (M⊥, M‖ and 1), and the
signal is therefore identified as a true chiral effect.

• No dichroic signals arise from a fluid, with time-odd electron variables, which is
unpolarized (zero applied magnetic field).

• No dichroic signals arise from a fluid, with time-odd electron variables, which is polarized
by a magnetic field applied in a direction that is perpendicular to the x-ray beam.

• MχD from a fluid with time-odd electron variables, subjected to an applied magnetic field,
is forbidden for all non-chiral symmetries (M⊥, M‖ and 1). MχD is therefore identified
as a true chiral signal, in this particular instance.

5. Atomic calculations

To step beyond the macroscopic descriptions of dichroism and scattering in previous sections,
one can appeal to atomic models. Such models have a long and distinguished record of success
in the analysis of observations on the electronic properties of materials made by techniques
that include ESR, NMR, Mössbauer spectroscopy, muon spectroscopy, and the scattering of
neutrons and x-rays [9, 27, 33, 45].

11
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To each ion in the model of the material one associates an atomic tensor [33, 45]. For a
crystalline material, the central object is a unit cell, and the unit cell structure factor, F , contains
a sum over all ions in the cell and their associated tensors. A manifestation of Neumann’s
principle is that, F possesses the symmetry of the point group of the crystal of which there
are 32 non-magnetic crystal classes. Within the context of an atomic model of a material, F
describes all bulk properties. To analyse diffraction, a spatial phase factor accompanies each
tensor and the structure factor is different from zero when the Bragg wavevector, defined by
Miller indices h, k, l, coincides with a reciprocal lattice vector indexed by one of the 230 space
groups. In general, atomic tensors in the unit cell are not related simply by translations because
sites in the cell may have different local environments. A change in translation symmetry leads
to additional Bragg reflections, e.g., purely magnetic superlattice reflections in diffraction by
an antiferromagnet or weak Bragg reflections that arise from angular anisotropy in the electron
valence states [46–48].

A dichroic signal is proportional to F(h, k, l) with h = k = l = 0, and formally this
dimensionless quantity is an inverse energy moment of the x-ray absorption cross-section,
or the imaginary part of the forward scattering length. The energy integration is carried out
over a small interval of energy in the vicinity of the relevant absorption edge. F(0, 0, 0)

can be expressed in terms of expectation values, or time averages, of atomic variables and
the expressions constitute the celebrated sum rules of Thole et al [6, 49, 50] that apply to
dichroic signals from spin–orbit split intervals of the x-ray absorption spectrum. Intensity in
a Bragg reflection is proportional to | f |2, where f is the scattering length. Quite often, it is
adequate to describe Bragg diffraction that is enhanced by a resonance event at an energy �

by f ≈ −�re F(h, k, l)/(E − � + i�/2) where re is the classical radius of an electron, E is
the x-ray energy and � is the total width of the resonance. The linear absorption coefficient is
μ = (4πn0/q)Im( f ), where n0 is the density of resonant scatterers. Using this expression for
μ and representing f by a single oscillator one finds

∫
(μ/E)dE ≈ (4π2n0re/q)F .

Having briefly reviewed the central role of F(h, k, l) in the analysis of dichroic signals and
Bragg diffraction patterns let us elaborate on the form it takes in the context of an atomic model.
Atomic tensors are labelled by their rank, K , which is a positive integer. The sum within the
unit cell of tensors associated with ions that engage in a resonance event, at an energy �, is
here called ΨK (h, k, l) and F = ∑

K XK · ΨK (h, k, l) where XK is a spherical tensor that
depends on properties of the primary and secondary x-rays [51]; see (6.3). We use XK to
describe E1–E1 resonance events and HK [52] to describe E2–E2 events, and expressions for
these tensors are provided in [9] for the four channels of polarization. The E1–E1 and E2–E2
events are parity-even, for they are products of matrix elements with definite parity.

Parity-odd events, such as E1–M1 and E1–E2, are similarly described within the
framework of an atomic model [9, 15, 39]. The only difference is a need to employ symmetric,
GK , and antisymmetric, UK , atomic tensors that appear in F(h, k, l) with their own x-ray
factors. A calculation of F(h, k, l) for the E1–E2 event is described in [9] and later in this
paper we give results from a corresponding calculation for the E1–M1 event.

Core-hole events possess selection rules that stem from the angular momentum transferred
in the photoelectron event [17]. E1 and E2 events involve one and two units, respectively.
Absorption at the K -edge and an E2 event form a powerful probe of 3d transition metal
ions because the observed signal is directly related to multipole moments of the 3d valence
shell [53]. In addition, the resonant energy is equivalent to an x-ray wavelength that matches
the separation of ions in a crystal and several Bragg reflections can be observed. At a K -edge,
the spin–orbit interaction is zero and there is no splitting of the core state by this interaction.
In consequence, an E2 dichroic signal or a Bragg diffraction pattern relate to properties of the
orbital angular momentum in the 3d valence shell, to a good approximation.
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The number of multipoles accessed in an observation is a direct consequence of the
triangle rule applied to the x-ray operators. E1 and E2 operators are tensors of rank 1 and
2, respectively. E1–E1, E1–E2 and E2–E2 events sample multipoles with ranks K = 0, 1,
and 2, K = 1, 2, and 3, and K = 0, 1, 2, 3 and 4, respectively. E1–M1 and E1–E1 events
contain multipoles with the same ranks although the physical contents of the multipoles are
very different since the former event is parity-odd and the latter is parity-even. Recall that,
multipoles in a parity-even event have a time signature that is related to the rank, and even-rank
(odd-rank) multipoles are time-even (time-odd). On the other hand, in a parity-odd event the
multipoles GK and UK for all K are time-odd and time-even, respectively.

Expressions for dichroic signals are provided and discussed in several places [5, 6, 9, 39].
In consequence, here we do no more than record a few key results by way of specific
illustrations of topics already discussed.

In our chosen coordinate system the z-axis is parallel to the x-ray beam, and q̂0 is the unit
wavevector. Linear polarization P3 = +1 is parallel to the x-axis. A dichroic signal is the
change on reversing polarization in the linear absorption coefficient. In dimensionless form,
the change �F through engaging an E1 event and averaging over states of polarization in the
x-ray beam is,

(�F(E1–E1))av = − 1√
2

q̂0 P2�
1
0 + 1

2
P3

(
�2

+2 + �2
−2

)
. (5.1)

The two contributions to the right-hand side are the circular and linear dichroic signals,
respectively. �K

Q (h, k, l) with −K � Q � K is evaluated for zero deflection of the x-ray
beam for which h = k = l = 0. The circular dichroic signal vanishes if there is no net
magnetization in the direction of the beam. �2

±2 account for the linear dichroic signal and
describe quadrupole-like structure factors with components in the plane normal to the beam.
In terms of equivalent Cartesian tensors one finds �2

+2 + �2
−2 ∝ �2

xx − �2
yy. Evidently, the

linear dichroic signal is zero for an isotropic or a metrically cubic material. Sum rules tell
us that summed over the spin–orbit split core states, �1

0 ≡ �1
z is proportional to the orbital

magnetization in the z-direction. Contributions at the edges are distinguished by spin and spin
anisotropy tensors of opposite sign [50, 54].

Turning to dichroism caused by a pure E2 event we give one important example. The
circular dichroic signal at the K -edge of a 3d transition metal ion is directly related to dipole
(K = 1) and octupole (K = 3) moments of the orbital magnetization in the 3d shell. One
finds, for this particular case,

(�F(E2–E2))av = 1

2
√

10
q̂0 P2

(
�1

0 − 2�3
0

)
. (5.2)

We conclude this section with a brief survey of dichroic signals created by an E1–E2 event
that can arise for non-centrosymmetric crystals [9, 15, 39]. Structure factors for the parity-odd
contributions are ΨK ,g and ΨK ,u , as in (6.6) and (6.7), where superscripts denote symmetric
(time-odd) and antisymmetric (time-even) atomic tensors, respectively.

Natural circular dichroism is proportional to P2�
2,u
0 (0, 0, 0). The structure factor

�
2,u
0 (0, 0, 0) is the sum of pseudotensors 〈U 2

0 〉 which are often referred to as an axial toroidal
quadrupole. An operator equivalent for U2 represents it as a product of orbital angular
momentum, L, and the orbital anapole, Ω = i[L2, n], where n is a unit polar vector [10, 15, 39].
Note that, L and Ω are orthogonal variables with L ·Ω = 0. The sum �

2,u
0 is zero if the crystal

class includes mirror symmetry.
One such case is the corundum structure R3c that is appropriate to the archetypal

magnetoelectric material Cr2O3 [11, 41, 42, 55, 56]. Although Ψ2,u(0, 0, 0) = 0 the sum can
be different from zero for a class of Bragg reflections that include h = k = 0 and l = 2n + 1.
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Figure 2. A projection onto the b–c plane of four sites in a cell and the magnetic dipole moments
associated with the sites. Moments lie in the plane of the figure, that is taken to be the b–c-plane of
the cell. An x-ray beam is directed along the c-axis.

The contribution to diffraction by Cr2O3 appears in channels with rotated polarizations, and it
has opposite signs in the two such channels, π ′σ and σ ′π [9, 48, 57]. The sign difference can
be assigned to opposite handedness in π ′σ and σ ′π .

Non-reciprocal linear dichroism caused by an E1–E2 event is proportional to
q̂0 P3{i(�2,g

+2 − �
2,g
−2 ) − √

2(�
3,g
+2 + �

3,g
−2 )} and it can be different from zero for materials that

support a long-range magnetic order. The combination (�
2,g
+2 −�

2,g
−2 ) behaves like a quadrupole

moment with x–y spatial symmetry. Both contributions to the dichroic signal vanish if the point
group excludes diad axes. Note that 〈G2〉 and 〈G3〉 are, respectively, pseudotensors and true
tensors, and their contributions to non-reciprocal dichroism differ in phase by 90◦.

The magnetochiral dichroic signal is controlled by the quantity q̂0{�1,g
0 − (2/3)1/2�

3,g
0 },

which is independent of polarization in the x-ray beam. Switching an applied magnetic field,
thereby reversing the sign of magnetoelectric tensors, affords a method of distinguishing a
magnetochiral, E1–E2 contribution to the absorption coefficient.

By way of an example we consider a non-centrosymmetric cell of four ions that is
sketched in figure 2. The cell and the configuration of magnetic moments arise in a conceptual
modification of a perovskite structure. By tuning the x-ray energy, contributions to dichroic
signals and diffraction come from four ions at sites d1 = (0, 0, 0), d2 = (0, 0, 1/2),
d3 = (1/2, 1/2, 0), and d4 = (1/2, 1/2, 1/2). In figure 2, the a-axis is normal to the plane
of the diagram and the magnetic moments, represented by arrows, lie in the b–c-plane. The
motif of moments is derived by taking site 1 as origin and generating the environment at site
2 by application of time-reversal, θ . The environment at site 3 is generated by a rotation by
π about the c-axis, an operation denoted by C2z . Sites 3 and 4 are related by θ , of course.
There is no net magnetization, because magnetic moments can be grouped in pairs along
the c-axis with opposite moments. As described, the model has a unique (polar) axis and a
ferroelectric modification is allowed. One finds �

K ,u
Q (0, 0, 0) = 4〈U K

Q 〉 with even Q, and

�
K ,g
Q (0, 0, 0) = 0. In consequence, natural circular dichroism is allowed and dichroic signals

from magnetoelectric tensors are forbidden.
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The dichroic response of the cell is changed by the addition of inversion to the symmetry
at sites 2 and 4, which makes the structure centrosymmetric. One finds �

K ,u
Q (0, 0, 0) = 0

and �
K ,g
Q (0, 0, 0) = 4〈G K

Q〉 with even Q. Several aspects of this modification merit comment.
First, the introduction of inversion symmetry rules out the possibility of a ferroelectric state.
Secondly, time-reversal and inversion are combined and a magnetoelectric state is allowed.
Thirdly, in the model, time-reversal and C2x are equivalent operations as the magnetic moments
are confined to the b–c-plane. Since IC2x is equivalent to a mirror plane natural circular
dichroism is forbidden, which is confirmed by finding �

K ,u
Q (0, 0, 0) = 0. These results depend

on the direction of the beam which in figure 2 is parallel to the c-axis. If the beam were rotated
to lie along the b-axis, for example, the magnetochiral and non-reciprocal dichroic signals
vanish.

6. E1–M1 scattering length

M1 transitions occur only at relatively low excitation energies [15, 17]. To a good
approximation, M1 transitions can be neglected in core-level events, considered thus far, for
they depend on the influence of the configuration interaction. A matrix element of the magnetic
moment operator, μ, vanishes unless the orbital angular momentum is the same in its two states.
Also, a matrix element of μ is proportional to the radial overlap of the two states and there
are no contributions to an M1 event from orthogonal orbitals [17]. Even so, analysis of the
observation of circular dichroism by a randomly oriented system suggests that core transitions
at the K -edge can enable E1–M1 events [58]. In the experiment, natural circular dichroism
was claimed at the carbon K -edge (∼290 eV) of methyloxirane in the vapour phase.

An analysis of the E1–M1 contribution to the scattering length in the framework of an
atomic model quickly reveals the salient features. However, the resulting expression for the
scattering length is not a promising starting point for ab initio calculations unless the majority
of contributing electron states are spatially localized.

The E1–M1 structure factor is derived from the dimensionless quantity [9],

Z(E1–M1) = 1

2

∑

η

∑

j j ′

〈{
ε ′ · R j |η〉〈η|(q × ε) ·μ j ′ + (q′ × ε ′) · μ j |η〉〈η|ε · R j ′

}〉
. (6.1)

Here, R j and μ j = (L + 2S) j are the position and magnetic moment of the electron labelled
by the index j . The primary x-rays have polarization ε and wavevector q, with q · ε = 0, and
a prime is used to denote the quantities that characterize secondary x-rays. Intermediate states
visited in an E1–M1 event are labelled η in (6.1), and outer angular brackets denote the mean
value, or time-average value.

Two x-ray factors arise in (6.1), one of which is formed by the vectors (q × ε) and ε ′ and
the second factor is derived from the first by exchanging primed and unprimed variables. Let
us define a spherical tensor,

M̃ K
Q = {

(q̂ × ε) ⊗ ε ′}K

Q
, (6.2)

where ⊗ denotes a tensor product (appendix A) [59–61] and q̂ = q/q . It is convenient for us
to express M̃ K

Q , and its counterpart M K
Q , obtained by exchanging primed and unprimed x-ray

variables, in terms of a tensor formed from the polarization vectors, namely,

X K
Q = (

ε ′ ⊗ ε
)K

Q
= (−1)K X̃ K

Q . (6.3)
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The rank K in (6.2) and (6.3) has values K = 0, 1 and 2. One can show that,

M̃ K
Q ± M K

Q = −i
√

6
∑

K ′Q′
(2K ′ + 1)1/2

{
K K ′ 1
1 1 1

}

× X K ′
Q′

∑

ν

(q̂ν ± (−1)K ′
q̂ ′

ν)(K ′Q′1ν|K Q). (6.4)

The Clebsch–Gordan coefficient and 6 j -symbol are here defined in accord with Edmonds [59]
and Judd [60]. The linear combinations of M̃ K

Q and M K
Q given in (6.4) are exactly what is

needed in the structure factor, as we shall now demonstrate.
The quantity Z(E1–M1) defined in (6.1) is evidently of the form,

Z(E1–M1) =
∑

K

{
M̃K · 〈ΥK 〉 + (

MK · 〈ΥK 〉)∗}
(6.5)

where ΥK is a spherical tensor operator that represents the properties of the electrons. The
mean value 〈ΥK 〉 is a linear combination of matrix elements of R and μ and appendix B
contains an explicit expression. M̃ K

Q satisfies (M̃ K
Q )∗ = (−1)K+Q M̃ K

−Q and there is a similar
result for M K

Q .
The operators ΥK for electrons do not have conventional properties because (6.5) is not

yet cast in a form that clearly displays the role of time-reversal combined with inversion. The
conjugate operation for x-ray variables is known as the crossing transformation that includes an
exchange of variables ε, ε ′, q̂, q̂′, P1, P2, P3 with ε ′, ε, q̂′, q̂, P1, −P2, P3 [16]. An individual
contribution to Z(E1–M1) must be unchanged by the simultaneous action, on the appropriate
atomic tensor, of time-reversal and inversion, and the crossing transformation applied to M̃K

and MK . The effect of the crossing transformation is summarized by M̃K ↔ MK , and the
linear combinations in (6.4) are symmetric (+) and antisymmetric (−) with respect to the
transformation. The symmetric combination M̃K + MK must be paired with our choice for
the magnetoelectric tensors, GK , that are symmetric with respect to the combined action of I
and θ , and M̃K − MK must, similarly, be paired with polar tensors, UK , that are antisymmetric
with respect to the combined action of I and θ . We have defined GK and UK to possess the
property 〈G K

Q〉∗ = 〈(G K
Q)+〉 = (−1)Q〈G K

−Q〉 and 〈U K
Q 〉∗ = (−1)Q〈U K

−Q〉. This property enters
our definition of time-even and time-odd, namely, an operator O is even or odd according to
the sign in θ Oθ−1 = ±O+.

The appropriate expression for 〈ϒ K
Q 〉 to use in (6.5) is derived by examination of the

matrix element reported in appendix B. One finds 〈ϒ K
Q 〉 = iK−1[〈U K

Q 〉 − i〈G K
Q〉] and here

the phase factor depends on our choice for Hermitian conjugates of UK and GK . Properties of
the electrons that can participate in a parity-odd event are represented by structure factors,

�
K ,g
Q =

∑

d

〈G K
Q〉d exp(ik · d) (6.6)

and,

�
K ,u
Q =

∑

d

〈U K
Q 〉d exp(ik · d), (6.7)

where k = q − q′ and the sum is over resonant ions. For Bragg diffraction, k coincides with a
reciprocal lattice vector (h, k, l), and the sum is over resonant ions in a unit cell of the crystal.

Effecting the rearrangement of (6.5) into the sum of symmetric and antisymmetric
components one arrives at,

Z(E1–M1) = AF(E1–M1),
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Table 7. Components of M̃ K
Q ± M K

Q with q′ = q that allow dichroic signals from E1–M1 events.
The x-ray beam defines the z-axis which in spherical coordinates is the component 0.

M̃1
0 + M1

0 = −i
√

2q̂0(ε
′ · ε)

M̃2+2 + M2+2 = 2iq̂0 X2+2

M̃0
0 − M0

0 = −i2
√

2/3q̂0 X1
0

=
√

2
(

M̃2
0 − M2

0

)

Averaging over states of polarizations in the beam of x-rays leads
to (ε′ · ε) → 1,

(
X2

2

)
av = (P3 + iP1)/2 and

(
X1

0

)
av = −q̂0 P2/

√
(2).

where A is a dimensionless constant, which contains reduced matrix elements of R and μ, and
our structure factor is,

F(E1–M1) =
∑

K=0,1,2

iK−1
∑

Q

(−1)Q
{
−i�K ,g

Q

(
M̃ K

−Q + M K
−Q

)
+ �

K ,u
Q

(
M̃ K

−Q − M K
−Q

)}
.

(6.8)

Equation (6.8) is our central result. It could be demanded simply by a previous analysis of
E1–E2 events, with the range of K being one of two essential differences. The second essential
difference between E1–E2 and E1–M1 structure factors is found in the x-ray factors, to which
we turn our attention.

X-ray factors M̃ K
Q and M K

Q evaluated for our chosen geometry, in which the z-axis
coincides with the x-ray wavevector q and the x-axis corresponds to P3 = +1, are different
from zero for projections Q = 0,±2. One easily finds that polar tensors K = Q = 0 and
K = 2, Q = 0 create natural circular dichroism. Using entries in table 7,

(�F(E1–M1))av =
√

2
3 P2

{√
2�

0,u
0 − �

2,u
0

}
. (6.9)

The structure factors �
K ,u
0 for k = 0 and with even K vanish if the point group includes a

mirror as an element of symmetry. These structure factors are sums of pseudotensors 〈U 0
0 〉

and 〈U 2
0 〉, and the latter arises in E1–E2 dichroic signals discussed in the previous section.

For a randomly oriented system, �
2,u
0 = 0 while �

0,u
0 is spherically symmetric and it can be

different from zero for a randomly oriented system. For a single electron U 0
0 ∝ L · Ω = 0. In

consequence, non-zero natural circular dichroism in a randomly oriented system is a measure
of two-electron correlations [15].

There are two possible contributions from magnetoelectric tensors to a dichroic signal,
namely,

(�F(E1–M1))av = −√
2q̂0�

1,g
0 + iq̂0 P3

{
�

2,g
−2 − �

2,g
+2

}
. (6.10)

The magnetochiral and non-reciprocal linear dichroic E1–M1 signals shown in (6.10) have
global symmetries already discussed in the context of E1–E2 signals. Here we mention
behaviour of the dichroic signals (6.10) with respect to rotation of the sample relative to the
beam. Rotation of the sample in a right-handed sense by an angle ϕ about the beam, defined
by us to be the z-axis, simply multiplies �K

Q by a phase exp(−iQϕ). Such a rotation evidently

leaves the magnetochiral signal, �
1,g
0 , unchanged. However, the non-reciprocal linear dichroic

signal, with Q = −2 and +2, acquires two phase factors exp(±2iϕ). Rotations for which the
phase factors are identical are ϕ = π/2 and the non-reciprocal linear dichroic signal changes
sign, while for ϕ = π the signal is unchanged. Other rotations of the sample of potential
interest are π about the x-axis or y-axis. One can show that [9], for each of these rotations
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the magnetochiral and non-reciprocal linear dichroic signals change sign. Hence, for the non-
reciprocal signal (6.10), rotation of the sample by π about the x-axis or y-axis is equivalent
to changing the direction of the beam, q0 → −q0. Looking at the natural circular dichroic
signal (6.9) one sees that it is unchanged by a rotation of the sample about the beam, because
Q = 0, and, also, the signal is unchanged by rotation of the sample by π about the x-axis
or y-axis. In contrast to the aforementioned behaviour of the natural circular dichroic signal,
circular dichroic signals in (5.1) and (5.2) are unchanged by a rotation of the sample about the
beam but change sign for rotation of the sample by π about the x-axis or y-axis, with the latter
property a signature of a non-reciprocal signal.

In a report of measurements of absorption spectra of GaFeO3 in the vicinity of the
Fe K -edge, Kubota et al [62] refer to the sum of magnetochiral and non-reciprocal linear
dichroic signals as directional dichroism. Spontaneous polarization and ferrimagnetism
coexist in this orthorhombic piezoelectric material (space group Pc21n) when held below a
magnetic transition temperature ≈200 K. An observed difference between absorption spectra
recorded with opposite polarity of the spontaneous magnetization diminishes with increasing
temperature of the sample, and it vanishes on passing through the transition temperature.
This finding, and the measured change in the difference signal on rotation of the sample
about the x-ray beam, is consistent with expressions in section 5 for magnetochiral and
non-reciprocal linear dichroic signals created by an E1–E2 event. Similar experimental
findings, deduced from the transmission spectrum in the optical range of energies (1.0–2.5 eV),
are in complete accord with expression (6.10) for directional dichroism due to an E1–M1
event [63].

We conclude this discussion of E1–M1 events in dichroic signals and scattering by
considering the extreme case of elastic backscattering for which q = −q′. Looking at the
entries in table 7, x-ray tensors for backscattering are derived by changing the signs of M K

Q .
The four amplitudes that describe processes in the four polarization channels are now derived
from all the resonant ions (scattering and not Bragg diffraction) and they are easily found to
be,

Fσ ′σ
π ′π

(E1–M1) = ∓i
√

2�
1,u
0 +

{
�

2,u
−2 − �

2,u
+2

}
= ±α3 + β, (6.11)

Fπ ′σ
σ ′π

(E1–M1) = ∓i
{
�

2,u
−2 + �

2,u
+2

}
+ 2√

3

{

�
0,g
0 − 1√

2
�

2,g
0

}

= ±iα2 + α1. (6.12)

Material information derived from dichroism, (6.9) and (6.10), is quite different from the
information in elastic backscattering. Note that unrotated channels of scattering (6.11) contain
only polar tensors. On the other hand, rotated channels (6.12) contain polar and magnetoelectric
tensors, and the polar contribution, α2, has opposite signs in the two channels π ′σ and σ ′π .
For a single electron, the magnetoelectric tensor G0

0 ∝ L · n = 0 and scattering is therefore
due to a two-electron contribution to (6.1). Tensor operators with Q = 0 are Hermitian and
in (6.11) and (6.12) such operators are U 1

0 , G0
0 and G2

0.
We have introduced in (6.11) and (6.12) variables α1, α2, α3 and β that lead to neat

expressions for the cross-section in terms of mean values of products of the variables, e.g.
〈β+α3〉 and 〈β+α3〉∗ = 〈α+

3 β〉 [2, 9]. Here, we give a result for the total scattered intensity, I ,
with linear (P3) and circular (P2) polarization in the primary beam. For P = (0, P2, P3), the
total intensity in elastic backscattering by E1–M1 events is proportional to,

I = 〈α+ ·α〉 + 〈|β|2〉 + P2〈β+α2 + α+
2 β + i(α+

3 α1 − α+
1 α3)〉

+ P3〈β+α3 + α+
3 β + i(α+

1 α2 − α+
2 α1)〉. (6.13)

The magnetoelectric contribution to I , proportional to α1, vanishes in the absence of magnetic
order and it couples to an external magnetic field. Non-magnetic contributions proportional to
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P2 and P3 have spatial signatures xy(x2 − y2) and xyz, respectively (the z-axis is defined by
the direction of the primary beam). The intensity (6.13) is associated with a Lorentzian energy
profile.

7. Conclusion

In this paper we strive to highlight the close relationship between symmetry properties and
their consequences for experimental observations in several layers of detail. Starting from the
general assertion that the result for an experiment cannot, on the microscopic level, depend
on the coordinates chosen for its description, we define two primary symmetries based on the
isotropy of space and time, namely the behaviour under inversion and, independently, under
time-reversal.

Most model experiments considered here employ circularly polarized (chiral or helical)
x-rays as a probe for dichroism in solid and fluid matter, using absorption or resonant Bragg
reflection events. Both kinds of experiment may be characterized by a scalar quantity, the
scattering length f , which is necessarily invariant under symmetry transformations applied to
the helical x-ray probe and the electronic properties of the sample.

The building blocks in our analysis of dichroism are, on the one hand, the behaviour of
the photon wavevector and the helicity with respect to various symmetry transformations and,
on the other hand, the behaviour of the electron variables under inversion and time-reversal.
Thus, up to three variables may combine to give a dichroic signal and their required symmetry
property is invariance under inversion and time-reversal. If these universal symmetries are
augmented by additional symmetry transformations, we can deduct selection rules, or rather
exclusion conditions, if these transformations affect only one part of the x-ray electron system
(Neumann’s principle). The results for forbidden and allowed dichroic signals are given in
tables and the cases for ordered solids and fluids are discussed separately.

We find that, a surprising number of exclusion cases can be derived from symmetry
properties, even before the details of the electronic system are taken into account. An atomic
(model) calculation is required if we consider resonant Bragg reflection from crystalline solids,
with a scalar unit cell structure factor F . In the forward direction F is proportional to a dichroic
signal, we recall. Resonant Bragg reflection results from a two stage process in the electronic
system and a detailed analysis shows that, the electron properties are represented by expectation
values of equivalent tensor operators, in an approximation that is frequently valid in the analysis
of observations. Scalar products of these multipoles with the corresponding x-ray variables
constitute the essential parts of F . To display the effects of symmetry at this level of detail we
consider a demonstrational model of a non-centrosymmetric cell. The final example is given
by a new calculation of the structure factor for a (parity-odd) E1–M1 event. It is only when the
atomic structure factor is recast into a new form, where the x-ray and electronic tensors exhibit
their appropriate symmetry properties, that the various dichroic signals are recovered.
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Appendix A. Helicity operator and tensor products

The helicity operator � = iq · (ε × ε+)/q , where q and ε are the photon wavevector and
polarization vector, respectively [16]. The time reversed polarization vector = −ε+ where +
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denotes Hermitian conjugation and ε × ε+ is a square matrix. Also, � is a time-even operator
by which we mean that it satisfies (θ�θ−1)+ = �. An operator equivalent for � is the Pauli
matrix σy .

An operator that changes sign under the combined action of the time-reversal and
Hermitian conjugation operations is time-odd. Some authors choose not to include Hermitian
conjugation in their definition of time-even and time-odd operators, in which case they are
unable to give a unique time signature to non-Hermitian operators such as the spin raising
operator S+ = −(Sx + iSy)/

√
2.

If Ak
q and Bk

q are spherical tensors (or tensor operators) the tensor product (Ak ⊗ Bk′
)K

Q
defines a spherical tensor of rank K and projection Q. A standard definition of the tensor
product is [59, 60],

(Ak ⊗ Bk′
)K

Q =
∑

qq ′
Ak

q Bk′
q ′ (kqk ′q ′|K Q), (A.1)

where (kqk ′q ′|K Q) is a Clebsch–Gordan coefficient. The coefficient is purely real, and it can
be different from zero when |k − k ′| � K � k + k ′. The parity of the tensor product is the
product of the parities of the two spherical tensors.

Let us explore properties of a tensor product of spherical harmonics Y k
q (R) and

Y k′
q ′ (R′) [59, 61]. The action of inversion is Y k

q (−R) = (−1)kY k
q (R) and complex conjugation

{Y k
q (R)}∗ = (−1)qY k−q(R). It is convenient to introduce the notation,

�K
Q = (Y k ⊗ Y k′

)K
Q, (A.2)

and the parity of �K
Q is determined by k + k ′. We assume that R �= R′. For the particular case

R = R′, �K
Q vanishes unless k + k ′ + K is even and these quantities are time-even, which

follows by a specific application of a general rule that we shall now establish.
Action of the time-reversal operator on a classical quantity, like �K

Q , is the same as complex
conjugation. The Hermitian conjugate {�K

Q}+ = {(�K
Q)∗}T, where the superscript T denotes

the transpose (elsewhere denoted by a tilde). As indicated above, the combination of complex
and Hermitian conjugation {(�K

Q)∗}+ = {(�K
Q)}T provides our time signature for �K

Q , and we
have,

(�K
Q)T = (Y k′ ⊗ Y k)K

Q = (−1)k+k′+K �K
Q = {(�K

Q)∗}+. (A.3)

In (A.3) the second equality is a property of the Clebsch–Gordan coefficient. The third equality
tells us that �K

Q has a time signature determined by k + k ′ + K . In particular, if �K
Q is parity-

even there is a one to one correspondence between the rank and time signature. By way of an
example, take k = k ′ = K = 1; one finds �1

Q ∝ i(R × R′)Q which is a spherical component
of an axial vector, and it is time-odd because k + k ′ + K is odd.

Turning to parity-odd �K
Q , even K is time-odd and odd K is time-even. Thus, with k + k ′

odd, for K even �K
Q is equivalent to a magnetoelectric tensor, G K

Q (K even), and with K odd
�K

Q is equivalent to a polar tensor, U K
Q (K odd). For the remaining G K

Q (K odd) and U K
Q

(K even) one may construct equivalents with a time-odd and parity-odd quantity, such as the
anapole Ω. Alternatively, one can construct equivalents (Y k′′⊗�K

Q )K ′
, e.g., an equivalent for the

pseudoscalar U 0 is derived from k = k ′ = k ′′ = 1, K = 1 and K ′ = 0 with U 0 ∝ i(R×R′)·R′′.
Hence a chiral measure of a material, U 0, involves three spatial coordinates and chirality is a
non-local property.

Appendix B. Single-electron matrix elements

The building element in an atomic model of an E1–M1 resonant event is the product of matrix
elements 〈a|ε′ · R|η〉〈η|(q × ε) ·μ|a′〉. We evaluate this product after representing the single-
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electron states |a〉, |a′〉 and |η〉 by jm states, respectively, with total angular momentum j1, j2
and J . The intermediate state |η〉 = |J M〉 is taken to be spatially isotropic with the product of
matrix elements summed over the projections M . One finds,
∑

M

〈a|ε′ · R|J M〉〈J M |(q × ε) ·μ|a′〉

= δl̄,l2 q〈l1|R|l̄〉〈l̄|l2〉(l1‖C(1)‖l2)(−1)1+J− j2(2J + 1)[(2 j1 + 1)(2 j2 + 1)]1/2

×
(

[l2(l2 + 1)(2l2 + 1)]1/2

{
l2 J 1/2
j2 l2 1

}

+ (−1) j2−J
√

6

{
1/2 J l2

j2 1/2 1

}) {
l1 j1 1/2
J l2 1

}

×
∑

K Q

(−1)K+Q(2K + 1)1/2

{
j1 1 J
1 j2 K

}

M̃ K
−Q

× (−1) j1−m1

(
j1 K j2

−m1 Q m2

)

. (B.1)

The x-ray spherical tensor M̃ K
Q is defined in (6.2). Three main factors contribute to (B.1); the

reduced matrix element of the dipole operator, ( j1‖R‖J), the reduced matrix element of the
magnetic moment operator, (J‖μ‖ j2), and a recoupling of angular momentum states. The
last factor is interpreted as a sum of matrix elements of a spherical tensor, ϒ K

Q , that satisfies
Wigner–Eckart theorem with a reduced matrix element ( j1‖ϒ(K )‖ j2) which is proportional

to, (−1)K (2K + 1)1/2

{
j1 1 J
1 j2 K

}

. The result (B.1) contains several selection rules. The

intermediate state must have angular momentum l2 and the radial overlap, 〈l̄|l2〉, must be
different from zero. Both these conditions arise from the matrix element of the magnetic
moment. Note that the latter is not zero at the K -edge, for which l̄ = l2 = 0 and
( j2‖μ‖ j2) = g( j2‖ j‖ j2) with the Landé factor g = 2 and ( j2‖ j‖ j2) = √

3/2. The reduced
matrix elements of a spherical harmonic (l1‖C(t)‖l2) vanish unless l1 + t +l2 is an even integer.
Thus, the dipole matrix element in (B.1) vanishes unless l1 + l2 = 2n + 1, which states that
allowed events are parity-odd (t = 1).
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